机器学习::文本特征提取(TF-IDF) - 第二部分

阅读本教程的第一部分:文本特征提取(TF-IDF) - 第一部分

这个职位是一个Continuation在哪里,我们开始学习有关文本特征提取和向量空间模型表示的理论和实践的第一部分。我真的建议你Ťo read the first part后一系列以遵循这个第二。

由于很多人喜欢这个教程的第一部分,该第二部分是比第一个长一点。

介绍

在第一篇文章中,我们学会了如何使用长期频Ťo represent textual information in the vector space. However, the main problem with the term-frequency approach is that it scales up frequent terms and scales down rare terms which are empirically more informative than the high frequency terms. The basic intuition is that a term that occurs frequently in many documents is not a good discriminator, and really makes sense (at least in many experimental tests); the important question here is: why would you, in a classification problem for instance, emphasize a term which is almost present in the entire corpus of your documents ?

在TF-IDF权重来解决这个问题。什么TF-IDF给出的是如何重要的是一个集合中的文档的话,这就是为什么TF-IDF结合本地和全球的参数,因为它考虑到不仅需要隔离的期限,但也文献集内的术语。什么TF-IDF然后做来解决这个问题,是缩小,同时扩大了难得的条件频繁的条款;出现比其他的10倍以上期限不为10倍比它更重要的是,为什么TF-IDF采用对数刻度的做到这一点。

But let’s go back to our definition of the\ mathrm {TF}(T,d)这实际上是长期的长期计数Ť在文档中d。使用这种简单的词频可能导致我们一样的问题滥用关键字,这是当我们有一个文档中的术语重复以改善上的IR其排名的目的(信息检索) system or even create a bias towards long documents, making them look more important than they are just because of the high frequency of the term in the document.

To overcome this problem, the term frequency\ mathrm {TF}(T,d)上的矢量空间中的文件的通常也归一化。让我们来看看我们是如何规范这一载体。

矢量归

假设我们要正常化术语频矢量\ {VEC V_ {D_4}}我们在本教程的第一部分已经计算。该文件D4从本教程的第一部分中有这样的文字表示:

D4:我们可以看到闪亮的阳光,明亮的阳光下。

And the vector space representation using the non-normalized term-frequency of that document was:

\ {VEC V_ {D_4}} =(0,2,1,0)

为了归一化矢量,是相同的计算单位向量矢量,而他们使用的是“帽子”符号表示:\帽子{V}。的单位矢量的定义\帽子{V}of a vector\ VEC {V}是:

\ displaystyle \hat{v} = \frac{\vec{v}}{\|\vec{v}\|_p}

\帽子{V}是单位矢量,或者归一化矢量,所述\ VEC {V}在矢量将被归一化和\ | \ VEC {V} \ | _p是个ñorm (magnitude, length) of the vector\ VEC {V}在里面L ^ p空间(别担心,我将所有的解释)。

的单位矢量实际上无非是矢量的归一化版本的更多,是一种载体,其长度为1。

归一化处理(来源:http://processing.org/learning/pvector/)
归一化处理(来源:http://processing.org/learning/pvector/)

但这里的重要问题是如何向量的长度来计算,并明白这一点,你必须了解的动机L ^ pspaces, also called勒贝格空间

勒贝格空间

How long is this vector ? (Source: Source: http://processing.org/learning/pvector/)
How long is this vector ? (Source: Source: http://processing.org/learning/pvector/)

通常,一个矢量的长度\ {VEC U】=(U_1,U_2,U_3,\ ldots,u_n)使用计算欧几里得范-一个准则是在矢量空间中分配一个严格正长度或大小于所有矢量的函数- ,其被定义为:

(来源:http://processing.org/learning/pvector/)
(来源:http://processing.org/learning/pvector/)

\ | \ VEC【U} \ |= \ SQRT【U ^ 2_1 + U ^ 2_2 + U ^ 2_3 + \ ldots + U ^ 2_n}

But this isn’t the only way to define length, and that’s why you see (sometimes) a numberpŤogether with the norm notation, like in\ | \ VEC【U} \ | _p。这是因为它可以被概括为:

\的DisplayStyle \ | \ VEC【U} \ | _p =(\左| U_1 \右| ^ P + \左| U_2 \右| ^ P + \左| U_3 \右| ^ P + \ ldots + \左|u_n \右| ^ p)^ \压裂{1} {p}

并简化为:

\的DisplayStyle \ | \ VEC【U} \ | _p =(\总和\ limits_ {I = 1} ^ {N} \左| \ VEC {U】_i \右| ^ P)^ \压裂{1} {P}

So when you read about aL2范,你正在阅读关于欧几里得范,a norm withp = 2时用于测量的矢量的长度的最常用标准,通常称为“大小”;其实,当你有一个不合格的长度测量(不pñumber), you have theL2范(欧几里得范数)。

当你阅读一L1范你正在阅读与规范P = 1, 定义为:

\的DisplayStyle \ | \ VEC【U} \ | _1 =(\左| U_1 \右| + \左| U_2 \右| + \左| U_3 \右| + \ ldots + \左| u_n \右|)

这无非是向量的组件的简单相加,也被称为出租汽车距离,也被称为曼哈顿距离。

出租车几何与欧几里得距离:在出租车几何所有三个描绘线具有对于相同的路径具有相同的长度(12)。在欧几里德几何,绿色的线有长度,6 \倍\ SQRT {2} \约8.48,和是个unique shortest path.
资源:维基百科::出租车几何

请注意,您也可以使用任何规范正常化的载体,但我们将使用最常用的规范,L2范数,这也是在0.9版本的默认scikits.learn。You can also find papers comparing the performance of the two approaches among other methods to normalize the document vector, actually you can use any other method, but you have to be concise, once you’ve used a norm, you have to use it for the whole process directly involving the norm (即所使用的L1范数的单位矢量是不会具有长度1,如果你要以后采取其L2范数)。

Back to vector normalization

现在你知道了矢量正常化进程是什么,我们可以尝试一个具体的例子,使用L2范数的过程(我们现在使用正确的术语),以规范我们的矢量\ {VEC V_ {D_4}} =(0,2,1,0)为了得到其单位向量\ {帽子V_ {D_4}}。为了做到这一点,我们将简单的将其插入单位矢量的定义,对其进行评估:

\帽子{V}= \frac{\vec{v}}{\|\vec{v}\|_p} \\ \\  \hat{v_{d_4}} = \frac{\vec{v_{d_4}}}{||\vec{v_{d_4}}||_2} \\ \\ \\  \hat{v_{d_4}} = \frac{(0,2,1,0)}{\sqrt{0^2 + 2^2 + 1^2 + 0^2}} \\ \\  \hat{v_{d_4}} = \frac{(0,2,1,0)}{\sqrt{5}} \\ \\  \small \hat{v_{d_4}} = (0.0, 0.89442719, 0.4472136, 0.0)

这就是它!我们的法矢\ {帽子V_ {D_4}}现在有一个L2范\ | \帽子{V_ {D_4}} \ | _2 = 1.0

注意,在这里我们归一化频率Cy document vector, but later we’re going to do that after the calculation of the tf-idf.

术语频率 - 逆文档频率(TF-IDF)重量

现在你已经了解了矢量归在理论和实践是如何工作的,让我们继续我们的教程。假设你有你的收藏(从教程的第一部分拍摄)在下列文件:

火车文档集:D1:天空是蓝色的。D2:阳光灿烂。测试文档集:D3:在天空,阳光灿烂。D4:我们可以看到闪亮的阳光,明亮的阳光下。

Your document space can be defined then asd = \ {D_1,D_2,\ ldots,D_N \}哪里ñ是在你的文集文档的数量,并在我们的情况下,D_{train} = \{d_1, d_2\}D_ {测试} = \ {D_3,D_4 \}。我们的文档空间的基数被定义\左| {{D_火车}} \右|= 2\left|{D_{test}}\right| = 2,since we have only 2 two documents for training and testing, but they obviously don’t need to have the same cardinality.

现在让我们看看,然后是如何IDF(逆文档频率)定义:

\的DisplayStyle \ mathrm {IDF}(T)= \日志{\压裂{\左| d \右|} {1+ \左| \ {d:吨\在d \} \右|}}

哪里\左| \ {d:T \在d \} \右|是个文件数其中术语Ť出现,术语频率函数满足当\ mathrm {TF}(T,d)\ 0 NEQ,我们只加1代入公式,以避免零分。

为TF-IDF式则是:

\ mathrm {TF \ MBOX { - } IDF}(T)= \ mathrm {TF}(T,d)\倍\ mathrm {IDF}(t)的

和该公式具有重要的后果:当你有给定文档中高词频(TF)达到TF-IDF计算的高权重(本地参数)和整个集合中的术语的低文档频率(全局参数)。

现在,让我们计算每个出现在与我们在第一个教程计算词频特征矩阵功能的IDF:

M_ {}列车=  \begin{bmatrix}  0 & 1 & 1 & 1\\  0 & 2 & 1 & 0  \end{bmatrix}

因为我们有4个特点,我们要计算\ mathrm {IDF}(T_1)\mathrm{idf}(t_2)\mathrm{idf}(t_3)\ mathrm {IDF}(T_4)

\ mathrm {IDF}(T_1)= \日志{\压裂{\左| d \右|} {1+ \左| \ {d:T_1 \在d \} \右|}} = \日志{\压裂{2} {1}} = 0.69314718

\ mathrm {IDF}(T_2)= \日志{\压裂{\左| d \右|} {1+ \左| \ {d:T_2 \在d \} \右|}} = \日志{\压裂{2} {3}} = -0.40546511

\mathrm{idf}(t_3) = \log{\frac{\left|D\right|}{1+\left|\{d : t_3 \in d\}\right|}} = \log{\frac{2}{3}} = -0.40546511

\ mathrm {IDF}(T_4)= \日志{\压裂{\左| d \右|} {1+ \左| \ {d:T_4 \在d \} \右|}} = \日志{\压裂{2} {2}} = 0.0

这些IDF权重可以由矢量作为表示:

\ {VEC {idf_列车}} =(0.69314718,-0.40546511,-0.40546511,0.0)

现在,我们有我们的词频矩阵(M_ {}列车)和表示我们的矩阵的每个特征的IDF(矢量\ {VEC {idf_列车}}),我们可以计算出我们的TF-IDF权重。我们要做的是矩阵中的每一列的简单乘法M_ {}列车与各自的\ {VEC {idf_列车}}向量维度。要做到这一点,我们可以创建一个正方形对角矩阵M_ {} IDF同时与垂直和水平尺寸等于向量\ {VEC {idf_列车}}dimension:

M_ {} IDF=   \begin{bmatrix}   0.69314718 & 0 & 0 & 0\\   0 & -0.40546511 & 0 & 0\\   0 & 0 & -0.40546511 & 0\\   0 & 0 & 0 & 0   \end{bmatrix}

和ñmultiply it to the term frequency matrix, so the final result can be defined then as:

M_ {TF \ MBOX { - } IDF} = M_ {火车} \倍M_ {IDF}

请注意,矩阵乘法是不可交换的,结果A \乘以B会比的结果不同乙\一个时代,这就是为什么M_ {} IDF是对乘法的右侧,以完成每个IDF值到其对应的特征相乘的期望的效果:

\begin{bmatrix}   \mathrm{tf}(t_1, d_1) & \mathrm{tf}(t_2, d_1) & \mathrm{tf}(t_3, d_1) & \mathrm{tf}(t_4, d_1)\\   \mathrm{tf}(t_1, d_2) & \mathrm{tf}(t_2, d_2) & \mathrm{tf}(t_3, d_2) & \mathrm{tf}(t_4, d_2)   \end{bmatrix}   \times   \begin{bmatrix}   \mathrm{idf}(t_1) & 0 & 0 & 0\\   0 & \mathrm{idf}(t_2) & 0 & 0\\   0 & 0 & \mathrm{idf}(t_3) & 0\\   0 & 0 & 0 & \mathrm{idf}(t_4)   \end{bmatrix}   \\ =   \begin{bmatrix}   \mathrm{tf}(t_1, d_1) \times \mathrm{idf}(t_1) & \mathrm{tf}(t_2, d_1) \times \mathrm{idf}(t_2) & \mathrm{tf}(t_3, d_1) \times \mathrm{idf}(t_3) & \mathrm{tf}(t_4, d_1) \times \mathrm{idf}(t_4)\\   \mathrm{tf}(t_1, d_2) \times \mathrm{idf}(t_1) & \mathrm{tf}(t_2, d_2) \times \mathrm{idf}(t_2) & \mathrm{tf}(t_3, d_2) \times \mathrm{idf}(t_3) & \mathrm{tf}(t_4, d_2) \times \mathrm{idf}(t_4)   \end{bmatrix}

现在让我们来看看这个乘法的一个具体的例子:

M_ {TF \ MBOX { - } IDF} = M_ {火车} \倍M_ {IDF}= \\   \begin{bmatrix}   0 & 1 & 1 & 1\\   0 & 2 & 1 & 0   \end{bmatrix}   \times   \begin{bmatrix}   0.69314718 & 0 & 0 & 0\\   0 & -0.40546511 & 0 & 0\\   0 & 0 & -0.40546511 & 0\\   0 & 0 & 0 & 0   \end{bmatrix} \\   =   \begin{bmatrix}   0 & -0.40546511 & -0.40546511 & 0\\   0 & -0.81093022 & -0.40546511 & 0   \end{bmatrix}

最后,我们可以将我们的L2归一化处理的M_ {TF \ MBOX { - }} IDF矩阵。请注意,这正常化“逐行”because we’re going to handle each row of the matrix as a separated vector to be normalized, and not the matrix as a whole:

M_ {TF \ MBOX { - } IDF} = \压裂{M_ {TF \ MBOX { - } IDF}} {\ | M_ {TF \ MBOX { - } IDF} \ | _2} = \begin{bmatrix}   0 & -0.70710678 & -0.70710678 & 0\\   0 & -0.89442719 & -0.4472136 & 0   \end{bmatrix}

这就是我们的我们的测试文档集,这实际上是单位向量的集合的漂亮归TF-IDF权重。如果你把矩阵的每一行的L2范数,你会发现它们都具有1的L2范数。

Python的实践

环境中使用Python的v.2.7.2Numpy 1.6.1Scipy v.0.9.0Sklearn(Scikits.learn)v.0.9

Now the section you were waiting for ! In this section I’ll use Python to show each step of the tf-idf calculation using theScikit.learn特征提取模块。

第一步是创建我们的训练和测试文档集和计算词频矩阵:

从sklearn.feature_extraction.text进口CountVectorizer train_set =(“天空是蓝色的。”,“阳光灿烂”。)TEST_SET =(“在天空中的太阳是光明的。”,“我们可以看到闪耀的太阳,。明亮的太阳“)count_vectorizer = CountVectorizer()count_vectorizer.fit_transform(train_set)打印 ”词汇“,count_vectorizer.vocabulary#词汇:{ '蓝':0, '太阳':1, '鲜艳':2 '天空':3} freq_term_matrix = count_vectorizer.transform(TEST_SET)打印freq_term_matrix.todense()#[[0 1 1 1]#[0 2 1 0]]

现在,我们有频率项矩阵(称为freq_term_matrix),我们可以实例化TfidfTransformer,这将是负责来计算我们的词频矩阵TF-IDF权重:

从进口sklearn.feature_extraction.text TFIDF TfidfTransformer = TfidfTransformer(NORM = “L2”)tfidf.fit(freq_term_matrix)打印 “IDF:”,tfidf.idf_#IDF:[0.69314718 -0.40546511 -0.40546511 0]

Note that I’ve specified the norm as L2, this is optional (actually the default is L2-norm), but I’ve added the parameter to make it explicit to you that it it’s going to use the L2-norm. Also note that you can see the calculated idf weight by accessing the internal attribute calledidf_。现在适合()方法计算矩阵中的IDF上,让我们改造freq_term_matrix到TF-IDF权重矩阵:

tf_idf_matrix = tfidf.transform(freq_term_matrix)打印tf_idf_matrix.todense()#[[0 -0.70710678 -0.70710678 0]#[0 -0.89442719 -0.4472136 0]]

这就是它的tf_idf_matrixis actually our previousM_ {TF \ MBOX { - }} IDF矩阵。You can accomplish the same effect by using the矢量器类Scikit.learn的这是一个矢量器自动结合CountVectorizerTfidfTransformerŤo you. See这个例子要知道如何使用它的文本分类过程。

I really hope you liked the post, I tried to make it simple as possible even for people without the required mathematical background of linear algebra, etc. In the next Machine Learning post I’m expecting to show how you can use the tf-idf to calculate the cosine similarity.

If you liked it, feel free to comment and make suggestions, corrections, etc.

引用本文为:基督教S. Perone,“机器学习::文本特征提取(TF-IDF) - 第二部分”,在亚洲金博宝未知领域,03/10/2011,//www.cpetem.com/2011/10/machine-learning-text-feature-extraction-tf-idf-part-ii/

参考

Understanding Inverse Document Frequency: on theoretical arguments for IDF

维基百科:: TF-IDF

经典的向量空间模型

Sklearn文本特征提取码

更新

2015年3月13日-格式化,固定图像的问题。
2011 10月3日-添加了有关使用Python示例环境信息

103个想法“机器学习::文本特征提取(TF-IDF) - 第二部分”

  1. 哇!
    Perfect intro in tf-idf, thank you very much! Very interesting, I’ve wanted to study this field for a long time and you posts it is a real gift. It would be very interesting to read more about use-cases of the technique. And may be you’ll be interested, please, to shed some light on other methods of text corpus representation, if they exists?
    (对不起,糟糕的英语,我正在努力对其进行改进,但仍然有很多工作要做的)

  2. 出色的工作基督徒!我期待着阅读的文档分类你的下一个职位,聚类和主题提取朴素贝叶斯,随机梯度下降,Minibatch-K均值和非负矩阵分解

    而且,scikit学习的文档上的文本特征提取部分(我是罪魁祸首?)真的很差。如果你想给一个手并改善目前的状况,不要犹豫,加入邮件列表。

    1. 十分感谢奥利弗。我真的想帮助sklearn,我只是得到一些更多的时间来做到这一点,你们都做了伟大的工作,我真的在lib中已经实现的算法量折服,保持良好的工作!

  3. 我喜欢这个教程的新概念我在这里学习水平较好。
    That said, which version of scikits-learn are you using?.
    最新通过的easy_install安装似乎有不同的模块层次结构(即没有找到sklearn feature_extraction)。如果你能提到你使用的版本,我只是尝试用这些例子。

    1. Hello Anand, I’m glad you liked it. I’ve added the information about the environment used just before the section “Python practice”, I’m using the scikits.learn 0.9 (released a few weeks ago).

  4. 哪里是第3部分?我必须提交在4天内向量空间模型的分配。把它在周末的希望吗?

  5. 由于基督徒!与s亚洲金博宝klearn向量空间很不错的工作。我只有一个问题,假设我已经计算了“tf_idf_matrix”,我想计算成对余弦相似性(每行之间)。我是有问题的稀疏矩阵格式,你可以请给出这样的例子?也是我的基质是相当大的,由60K说25K。非常感谢!

  6. 伟大的职位......我明白了什么TF-IDF以及如何与一个具体的例子实施。但我发现2周的事情,我不知道:
    1-你调用2维矩阵M_train,但它具有D3和D4文件的TF值,所以你应该已经给那矩阵M_test而不是M_train。由于D3和D4是我们的测试文档。
    2- When you calculate the idf value for the t2 (which is ‘sun’) it should be log(2/4). Because number of the documents is 2. D3 has the word ‘sun’ 1 time, D4 has it 2 times. Which makes it 3 but we also add 1 to that value to get rid of divided by 0 problem. And this makes it 4… Am I right or am I missing something?
    谢谢。

    1. You are correct: these are excellent blog articles, but the author REALLY has a duty/responsibility to go back and correct errors, like this (and others, e.g. Part 1; …): missing training underscores; setting the stop_words parameter; also on my computer, the vocabulary indexing is different.

      As much as we appreciate the effort (kudos to the author!), it is also a significant disservice to those who struggle past those (uncorrected) errors in the original material.

      1. 回复:我“你是正确的注释”(上),我应该补充:

        “......还注意到康斯登Passot的评论(下同)关于分母:

        “......我们用的是什么确实是在发生的一个术语,无论任何给定的文档中出现的术语次数的文件数量。在这种情况下,然后,在用于T2(“太阳”)的IDF值分母确实2 + 1(2个文件具有“太阳”术语,1以避免潜在的零分割误差)。“

    2. 哈立德,
      这是一个很古老的问题的答复。亚洲金博宝不过,我还是想回应沟通一下我从文章中了解。
      你的问题2:“当你计算IDF值的T2(这是‘太阳’),它应该是日志(2/4)”
      My understanding: The denominator in log term should be (number of documents in which the term appears + 1) and not frequency of the term. The number of documents the term “Sun” appears is 2 (1 time in D3 and 2 times in D4 — totally it appears 3 times in two documents. 3 is frequency and 2 is number of documents). Hence the denominator is 2 + 1 = 3.

  7. excellent post!
    我有一些问题。从上个TF-IDF权重矩阵,我们怎么能拿到各自任期的重要性(例如,这是最重要的用语?)。我们如何利用这个矩阵文件进行分类

  8. 非常感谢。你在这样一个简单的方法来解释它。这是非常有用的。再次感谢了很多。

  9. 我有同样的疑问,杰克(最后的评论)。从上个TF-IDF权重矩阵,我们怎么能拿到各自任期的重要性(例如,这是最重要的用语?)。我们如何利用这个矩阵来区分文档。

  10. 我有个问题..
    在TF-IDF操作后,我们得到与值的numpy的阵列。假设我们需要从阵列中获得最高50个值。我们怎样才能做到这一点?

    1. F(IDF)的高值,表示特定载体(或文件)具有较高的局部强度和低全球实力,在这种情况下,你可以假设,在它的条款具有很高的重要性本地和不能忽视的。针对funtion(TF),其中只有长期重复大量的时间给予更多重视的那些,其中大部分时间是不正确的建模技术比较。

  11. 嘿,
    感谢名单FR d code..was的确非亚洲金博宝常有帮助!

    1.For document clustering,after calculating inverted term frequency, shud i use any associativity coefficient like Jaccards coefficient and then apply the clustering algo like k-means or shud i apply d k-means directly to the document vectors after calculating inverted term frequency ?

    2.您是如何评价倒词频为calcuating文档向量文本聚类?

    由于一吨FR第四到来的答复!

  12. @Khalid: what you’re pointing out in 1- got me confused too for a minute (M_train vs M_test). I think you are mistaken on your second point, though, because what we are using is really the number of documents in which a term occurs, regardless of the number of times the term occurs in any given document. In this case, then, the denominator in the idf value for t2 (“sun”) is indeed 2+1 (2 documents have the term “sun”, +1 to avoid a potential zero division error).

    我喜欢阅读本系列的第三批呢!我特别想了解更多有关特征选择。是否有一个惯用的方式来获得最高的分数TF.IDF条款的排序列表?你将如何确定这些方面的整体?你将如何得到这是最负责高或低的余弦相似度(逐行)的条款?

    谢谢你的帖子_美好的_!

  13. 优秀文章和一个伟大的介绍TD-IDF正常化。

    你必须解释这些复杂的概亚洲金博宝念非常清晰,结构化的方法。

    谢谢!

      1. 亚洲金博宝很不错的&infomative教程...。请相关的上传文档聚类过程更多的教程。

  14. Can you provide any reference for doing cosine similarity using tfidf so we have the matrix of tf-idf how can we use that to calculate cosine. Thanks for fantastic article.

  15. 请纠正我,如果我拨错
    与启动后的公式“我们在第一个教程中计算出的频率:”应该不MTEST Mtrain。也开始“这些IDF权重可以由矢量作为表示后:”应该是不idf_test idf_train。

    顺便说一句伟大的系列赛,你可以给如何实施分类的简单的方法?

  16. Excellent it really helped me get through the concept of VSM and tf-idf. Thanks Christian

  17. 亚洲金博宝很不错的职位。恭喜!!

    显示你的结果,我有个问题:

    我读了维基百科:
    成比例的TF-IDF值增加到的次数的字出现在文档中,但是通过在语料库中的字,这有助于控制的事实,一些词语通常比另一些更常见的频率偏移。

    When I read it, I understand that if a word apperars in all documents is less important that a word that only appears in one document:

    然而,在结果中,“太阳”或“明亮”是比“天空”最重要的。

    我不知道的完全地理解它。

  18. 了不起!我以前熟悉的TF-IDF,但我发现你scikits例子有益,因为我想学习那个包。

  19. Excellent post! Stumbled on this by chance looking for more information on CountVectorizer, but I’m glad I read through both of your posts (part 1 and part 2).

    现在用书签您的博客

  20. 似乎没有fit_transform()为你描述..
    任何想法,为什么?
    >>> TS
    (“天空是蓝色的”,“阳光灿烂”)
    >>> V7 = CountVectorizer()
    >>> v7.fit_transform(TS)
    <2×2型的稀疏矩阵“”
    用4个存储元件在坐标格式>
    >>>打印v7.vocabulary_
    {u'is’:0,u'the”:1}

    1. 其实,还有第一个Python样本中的两个小错误。
      1. CountVectorizer should be instantiated like so:
      count_vectorizer = CountVectorizer(STOP_WORDS = '英语')
      This will make sure the ‘is’, ‘the’ etc are removed.

      2. To print the vocabulary, you have to add an underscore at the end.
      打印“词汇:” count_vectorizer.vocabulary_

      优秀的教程,只是小事情。hoep它可以帮助别人。

      1. 由于灰。虽然文章是相当自我解释的,您的评论使整个差异。

  21. 感谢您抽出时间来写这篇文章。发现它非常有用。亚洲金博宝

  22. 感谢伟大的解释。

    我有一个关于IDF(T#)的计算问题。
    In the first case, you wrote idf(t1) = log(2/1), because we don’t have such term in our collection, thus, we add 1 to the denominator. Now, in case t2, you wrote log(2/3), why the denominator is equal to 3 and not to 4 (=1+2+1)? In case t3, you write: log(2/3), thus the denominator is equal 3 (=1+1+1). I see here kind of inconsistency. Could you, please, explain, how did calculate the denominator value.

    谢谢。

    1. 你理解错了,分母你不把这个词的总和每个文档中,你只是总结所有具有词的至少一个aparition的文件。

  23. 这是很好的,如果你能提供的方式来知道如何使用FT-IDF中的文档分类。我看到示例(Python代码),但如果有算法是最好的,因为没有所有的人都能理解这种语言。

    谢谢

  24. 尼斯。一种解释有助于正确看待这个事情。是TF-IDF的好办法做聚类(例如,从已知的语料用杰卡德分析或方差相对于平均值设定)?

    继续写:)

  25. 嗨基督徒,

    It makes me very excited and lucky to have read this article. The clarity of your understanding reflects in the clarity of the document. It makes me regain my confidence in the field of machine learning.

    由于一吨为美丽的解释。

    想从你更多。

    谢谢,

  26. 谢谢你的良好的收官之作。你提到一些这比较L1和L2规范的论文,我计划研究,多一点深入。你还知道他们的名字?

  27. 我如何能计算TF IDF为自己的文本文件,它位于一些地方在我的电脑?

  28. 辉煌的文章。

    到目前为止TF-TDF的最简单,最完善的解释,我读过。我真的很喜欢你如何解释数学后面。

  29. Hi, great post! I’m using the TfidVectorizer module in scikit learn to produce the tf-idf matrix with norm=l2. I’ve been examining the output of the TfidfVectorizer after fit_transform of the corpora which I called tfidf_matrix. I’ve summed the rows but they do not sum to 1. The code is vect = TfidfVectorizer(use_idf=True, sublunar_tf=True, norm=”l2). tfidf_matrix = vect.fit_transform(data). When I run tfidf_matrix.sum(axis=1) the vectors are larger than 1. Perhaps I’m looking at the wrong matrix or I misunderstand how normalisation works. I hope someone can clarify this point! Thanks

  30. 我能问你的时候计算的IDF,例如日志(2/1),你用日志基地10(E)或其他一些价值?我得到不同的计算!

  31. Great tutorial, just started a new job in ML and this explains things very clearly as it should be.

  32. Execellent帖子...。!非常感谢这篇文章。

    但是,我需要更多的信息,当你展示实际使用python,你可以为它提供JAVA语言..

  33. 我有点困惑,为什么TF-IDF在这种情况下,给出了负数?我们如何解读?纠正我,如果我错了,但是当载体为正值,这意味着该组件的大小确定字是该文件中有多么重要。如果是负数,我不知道如何解释它。如果我是采取向量的点积与所有积极的部件和一个负组件,这将意味着,一些部件可能负点积贡献,即使在载体有一个特定的词非常高的重视。亚洲金博宝

  34. Hi,
    非常感谢您对这个主题这个详细的解释,真是太好了。无论如何,你可以给我一个提示,这可能是我的错误,我不断看到的来源:

    freq_term_matrix= count_vectorizer.transform(test_set)
    AttributeError的:“矩阵”对象没有属性“变换”

    我使用sklearn的版本错误?

  35. 真棒简单而有效的explaination.Please发布更多的话题与这样真棒explainations.Looking着为即将到来的文章。
    谢谢

  36. 谢谢克里斯,你是唯一一个谁是明确了对角矩阵在网络上。

  37. 我明白了TF-IDF计算处理。不过这是什么矩阵均值,以及我们如何使用TFIDF矩阵计算相似度让我困惑。你能解释一下,我们如何利用TFIDF矩阵.thanks

  38. 最好的解释..非常有帮助。亚洲金博宝你能告诉我如何绘制矢量文本分类的SVM ..我在微博分类工作。我很困惑,请帮助我。

  39. 您好,我很抱歉,如果我有错,但我不明白是怎么|| VD4 || 2 = 1。
    Ťhe value of d4 = (0.0 ,0.89,0.44,0.0) so the normalization will be = sqrt( square(.89)+square(.44))=sqrt(.193) = .44
    所以我有没有遗漏了什么?请帮我明白了。

  40. 嗨,这是一个伟大的博客!
    如果我需要做双克的情况下,我该如何使用sklearn来完成呢?

  41. 我没有得到相同的结果,当我执行相同的脚本。
    打印(“IDF:”,tfidf.idf_):IDF:[2.09861229 1. 1.40546511 1]

    我的Python版本:3.5
    Scikit Learn version is: o.18.1

    what does i need to change? what might be the possible error?

    谢谢,

    1. 它可以是很多东西,因为你使用的是不同的Python解释器的版本也不同Scikit-学习版,你应该会在结果的差异,因为他们可能已经改变了默认参数,算法,圆等

  42. Perfect introduction!
    没有骗人把戏。清晰简单的,随着技术的应。
    Very helpful
    非常感谢你。亚洲金博宝
    请发帖!
    Obrigado

  43. 为什么| d |= 2,在IDF方程。它不应该是4,因为| d |代表的审议的文件数量,我们有2从测试,2个来自火车。

  44. 哎,HII基督教
    您的文章是真正帮助我了解从基础TFD-IDF。我在分类的一个项目,其中我使用向量空间模型,这导致在确定类别在我的测试文档应该存在。机器学习的一部分。如果你认为我有关的东西这将是巨大的。我被困在这一点上。
    谢谢

  45. See this example to know how to use it for the text classification process. “This” link does not work any more. Can you please provide a relevant link for the example.

    谢谢

  46. 也就是说,如果你有一个很好的post.Really谢谢!太棒了。

  47. 当然有很大的了解这个问题。我真的很喜欢所有的点,你做。

  48. 1vbXlh你提出了一个非常美妙的细节,欣赏它的职位。亚洲金博宝

  49. 我知道这个网站提供基于高质量的文章或
    评论和其他数据,还有没有其他的网页呈现这类
    information in quality?

  50. 在第一个例子。IDF(T1),日志(2/1)由计算器= 0.3010。为什么他们获得0.69 ..请有什么不对?

发表回复基督教S. Perone取消回复

您的电子邮件地址不会被公开。

本网站使用的Akismet,以减少垃圾邮件。了解您的意见如何处理数据